Constitutively-active androgen receptor variants function independently of the HSP90 chaperone but do not confer resistance to HSP90 inhibitors
نویسندگان
چکیده
The development of lethal, castration resistant prostate cancer is associated with adaptive changes to the androgen receptor (AR), including the emergence of mutant receptors and truncated, constitutively active AR variants. AR relies on the molecular chaperone HSP90 for its function in both normal and malignant prostate cells, but the requirement for HSP90 in environments with aberrant AR expression is largely unknown. Here, we investigated the efficacy of three HSP90 inhibitors, 17-AAG, HSP990 and AUY922, against clinically-relevant AR missense mutants and truncated variants. HSP90 inhibition effectively suppressed the signaling of wild-type AR and all AR missense mutants tested. By contrast, two truncated AR variants, AR-V7 and ARv567es, exhibited marked resistance to HSP90 inhibitors. Supporting this observation, nuclear localization of the truncated AR variants was not affected by HSP90 inhibition and AR variant:HSP90 complexes could not be detected in prostate cancer cells. Interestingly, HSP90 inhibition resulted in accumulation of AR-V7 and ARv567es in both cell lines and human tumor explants. Despite the apparent independence of AR variants from HSP90 and their treatment-associated induction, the growth of cell lines with endogenous or enforced expression of AR-V7 or ARv567es remained highly sensitive to AUY922. This study demonstrates that functional AR variant signaling does not confer resistance to HSP90 inhibition, yields insight into the interaction between AR and HSP90 and provides further impetus for the clinical application of HSP90 inhibitors in advanced prostate cancer.
منابع مشابه
Expression of hsp90 Alpha and hsp90 Beta during Xenopus laevis Embryonic Development
Background: Members of the eukaryotic Hsp90 family function as important molecular chaperones in the assembly, folding and activation of cellular signaling in development. Two hsp90 genes, hsp90 alpha and hsp90 beta, have been identified in fish and homeothermic vertebrates but not in poikilothermic vertebrates. In the present study, the expression of hsp90 alpha and hsp90 beta genes in Xenopus...
متن کاملAilanthone targets p23 to overcome MDV3100 resistance in castration-resistant prostate cancer
Androgen receptor (AR) antagonist MDV3100 is the first therapeutic approach in treating castration-resistant prostate cancer (CRPC), but tumours frequently become drug resistant via multiple mechanisms including AR amplification and mutation. Here we identify the small molecule Ailanthone (AIL) as a potent inhibitor of both full-length AR (AR-FL) and constitutively active truncated AR splice va...
متن کاملGenistein down-regulates androgen receptor by modulating HDAC6-Hsp90 chaperone function.
Androgen receptor (AR) is a ligand-activated transcription factor belonging to the steroid hormone receptor family and is very important for the development and progression of prostate cancer. The soy isoflavone genistein has been shown previously to down-regulate AR in androgen-dependent prostate cancer cell lines such as LNCaP. However, the mechanism(s) by which AR is down-regulated by genist...
متن کاملThe Co-Chaperone Hch1 Regulates Hsp90 Function Differently than Its Homologue Aha1 and Confers Sensitivity to Yeast to the Hsp90 Inhibitor NVP-AUY922
Hsp90 is a dimeric ATPase responsible for the activation or maturation of a specific set of substrate proteins termed 'clients'. This molecular chaperone acts in the context of a structurally dynamic and highly regulated cycle involving ATP, co-chaperone proteins and clients. Co-chaperone proteins regulate conformational transitions that may be impaired in mutant forms of Hsp90. We report here ...
متن کاملCircumventing HSP90 inhibitors via apoptosis block
Heat shock protein 90 (HSP90) is a phylogenetically conserved molecular chaperone that plays a crucial role in regulating cancer cell signalling client networks, and has been described as an evolutionary capacitor that buffers genome variation under normal conditions [1]. Consequently HSP90 inhibition is pleiotropic in its targeting, effectively inhibiting critical cancer networks. Personalizin...
متن کامل